Gr. 5 – Understanding Earth and Space Systems

Conservation of Energy and Resources

Windmill

Specific Expectations:

- 1.1 Analyse the long-term impacts on society and the environment of human uses of energy and natural resources, and suggest ways to reduce these impacts.
- 2.1 Follow established safety procedures for using tools and materials.
- 2.2 Use scientific inquiry/research skills to investigate issues related to energy and resource conservation.
- 2.3 Use technological problem-solving skills to design, build, and test a device that transforms one form of energy into another and examine ways in which energy is being "lost" in the device.
- 3.2 Identify renewable and non-renewable sources of energy.
- 3.3 Describe how energy is stored and transformed in a given device or system.

Big Idea (for lesson):

Students investigate wind power as a renewable source of energy, and how it acts as a force to power a windmill. Students design and test different models to see which catches the wind best to produce movement.

Accommodations:	Differentiated Instruction:		
	Content: Use demo to show the content as		
∀ Visual Aids	you offer verbal descriptions.		
Manipulatives	Process: Have students work in pairs and		
Chunking	support each other if physical impediments		
Step-by-Step	exist.		
Scaffolding	Product: Students may show their final		
Copy of Notes	product in pairs, and communicate their		
Student Grouping	findings either verbally, visually, or through		
	written means.		
	Other:		
Bloom's Taxonomy:	Multiple Intelligence:		
	∀ Verbal/Linguistic		
Comprehension	□ Logical/Mathematical		
Application	∀ Visual/Spatial		
Analysis	Bodily/Kinesthetic		
Synthesis	Naturalist		
Evaluation	Musical/Rhythmic		
	Intrapersonal		

Gr. 5 – Understanding Earth and Space Systems

Conservation of Energy and Resources

Delivering The Lesson:

Portion &	Gı	ounin	φ.	Introduction:	Materials
Timing	Grouping:		ρ,	ma oddetion.	iviaterials
	147	_		T	4.61
Minds On: 10 mins	W	S	<u> </u>	Teacher can do a demonstration to	4 Styrofoam
10 mins				introduce how movement of water can do	plates
				work by changing one type of energy to	Pencil
				another. Follow the instructions here to	Stiff straw
				build an easy water wheel:	9 small
				http://howto.wired.com/wiki/Build_a_Plast	plastic cups
				ic_Cup_Waterwheel	Masking tape
				Ask students where the energy that lifts the	String
				pulley comes from? (Answer: The force of	Water
				the water turning the wheel.)	container/ho
				Ask students if they can think of any other	se
				sources of energy that are captured by	
				turning wheels? (Answer: Windmills!).	
Action:	W	S		Have students build their own windmills	Windmill
15 mins	\boxtimes		\boxtimes	according to the instructions on the	Handout
				handout.	(Materials
				Teacher can circulate and ask questions of	listed)
				the different groups:	
				-Besides wind and water, can you think of	
				other places that energy comes from?	
				(Answers listed on handout.)	
				-What type of things do we use energy to	
				do?	
				-Is the energy from our windmill doing any	
				real work? (Answer: No, but we can make it	
				do work with some adjustments.)	
Consolidate:	W	S	<u> </u>	With a little bit of preparation, you can	Pinwheel
15 mins	\boxtimes			have an electrical set-up that can be	windmill
				connected to the windmill. The instructions	(from
				are found at the following website:	handout)
				http://www.hometrainingtools.com/a/wind	Small electric
				-energy-science-newsletter	motor
				-Explain to students that the addition of the	Alligator clip
				motor makes it into a generator. Show	leads
				students that electricity flows through and	1.5 V bulb
				lights the bulb.	Strong fan
				Ask students what type of energy the	
				spinning mechanical energy changes into?	
				(Answer: electrical energy, then light.)	
				-How is this set-up similar to real windmills?	

Gr. 5 – Understanding Earth and Space Systems

Conservation of Energy and Resources

	(Answer: they have large-scale generators that also convert mechanical energy into electrical, and potentially light!) -Are wind and water renewable sources? (Answer: Yes, they do not run out.) -How could energy stored be stored in a windmill? (Answer: The wind energy itself can't be stored, but the electrical energy is. We use large instruments called "flywheels" to help lessen the waste of electricity during "off-peak" hours.)	
--	--	--